EXACT SOLUTION TO THE PROBLEMS OF
MASSIVE FREEZING IN A SOLUTION

P, P. Zolotarev and A. A. Roshal! UDC 536.421.4

The problem of massive freezing in a hypoeutectic solution is analyzed under various bound-
ary conditions at the free surface.

In [1] the authors have considered the first boundary-value- problem of massive freezing (0 = x =)
in a hypoeutectic solution with the free surface (x = 0) held at a rather low constant temperature Ty (0, t)

= fp. Such a situation may arise, for instance, when the solution comes into contact with strongly ("ideally")
stirred convective air.

In that article we have solved the first boundary-value problem for the other (extreme) case, namely
where the solution (0 = x < =) is in contact with still air (—~ = x = =) and the temperature of the latter
is held constant at a low enough level to allow the solution to freeze. Also the second and the third boundary-
value problem of massive freezing have been solved for the case of constant respective boundary condi-
tions at the free surface (x = 0). For a pure solvent, these solutions become those arrived at in [2].

1. We will now consider the freezing of a solution in contact with still air. Let the air occupy the
region (—=~ =< x = 0) and let the solution initially occupy the region (0 = x = =), Let §(x, t), Ty, t), and
Ty (x, t) denote the temperatures of the air, of the freezing solvent, and of the solution respectively, while
c¢(x, t) denotes the solute concentration. '

These quantities must satisfy the following equations:
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with the boundary conditions at infinity and the initial conditions
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Here k = (RTx/L)* (M'/pM).

We will seek the solution to the problem in the form:
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The equation for « is derived from the calorimetric condition (4):
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When A+ = ©, we have 4 (x, t) = 6, and formulas (6), (7) become those in [1].

Problem (1)-(7) and the problem analyzed in [1] describe the extreme cases of massive freezing in
a solution in contact with air.

The preceding problem, as has been mentioned earlier, corresponds to the case of still air without
convection (purely conductive heat transfer in the gaseous phase). The freezing rate calculated for these
conditions will be the lowest possible. The problem in [1], on the other hand, can be interpreted as one
of massive freezing in a solution in contact with air during convective stirring so strong ("ideal") that
8 (x, t) = 6,. In this case the freezing rate will be the highest possible. Under actual conditions of con-
vective air stirring, the freezing rate will be somewhere between those two extreme ones.

If the medium (*) is air, then condltlons {6) and (7) can be simplified. Indeed, for air we have Ax
= 5.3-10-%cal/cm - sec* °C, %x = 1.7- 10" and % = 1.15- 102 cm?/sec, Ay = 5.3 10 % cal/cm- sec- °C (ice).

Therefore, M/Asvvs/% =~ 3.8-10%, 1. e., A/ Asvra/ng > 1 and N/AsV¥x/ng > erfVa/ny (since erfva/ny
= 1).

Consequently,
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and Eq. (7) becomes




If To = Tx (1—key), then (7) can be rewritten as
A8,
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where z = Va/%; and B(z) is found from expression (6).

The ¥,(z) term characterizes the effect of diffusion on the freezing process. For a pure solvent
¥y (z) = 0.

For following approximate formulas apply to ¥, (z) and ¥, (z):
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The last formula in (10) can be derived by an asymptotic expansion of erfe(z) for large z.

¥ () =~ z for zK1,

(10)

Values of z = f(A6,/Tx) calculated according to formula (9) are listed in Table 1 for a pure solvent
(¥, = 0) and for a solution. These values are based on A+ = 5.3- 1079 cal/cm - sec- °C, A = 5.3 1073 cal
/em - sec-°C, Ay = 1.44-107%cal/em - sec*°C, nx = 1.7-10  cm?/sec, wy = 1.15-102em?/sec, w, = 1.44
-10~%cm?/sec, L = 79.7 cal/g, D= 10"%cm?/sec, ¢, ~ 5%, k = 2.2-107%, ke, ~ 1.1-107%, and c* = 0.

The relation z = £(A8,/Tx) for the other case 6(x, t) = 6,was calculated in [1] with the same values
of the parameters.

2. We now consider the second and the third boundary-value problem of massive freezing in a hypo~
eutectic solution (0 = x < =) under constant boundary conditions at the surface x = 0 and with a constant
initial temperature distribution. For this case, the original equations can be written as
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The initial conditions (2) for Ty and ¢ as well as the boundary conditions (4) at the interphase bound-
ary are retained, while the boundary conditions at the free surface x = 0 are written as follows:

a1, ==b (second boundary-value problemy, 12)
(2 PR o ’
Ty (x, 0) + oT, I =} (thid boundary-value problemy), (13)
x=0

where b and j are assumed constant.

Let us solve the second boundary-value problem. For the concentration c(x, t) and for ! (t) we seek
the solution in the form

¢ (%, t):A+Berfc( () =24 o, (14)

v )
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TABLE 1. Argument z in The formulas for temperatures Ty and Ty will be written in ana-
Expression (9), as a Function logy to those in [2], as
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Using conditions (2) and (4), we obtain
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It is easy to see that the expressions for the coefficients of Ty and T, in our problem must be ana~
logous to the expressions for the corresponding coefficients in the solution to the second boundary-value
problem for a pure solvent [2], if T«[l~kco—kBerfc ¥a/D)] is now regarded in lieu of Tf = T3,

(16)

Indeed, condition (4) for Ty(!, t) and condition (12) yield for the constants E;, Fy, and Gy
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Constants Ey, Fy, and Gy are determined from the initial condition (2) for T,, from the relation for
Ty, t), and from the calorimetric condition (4), namely:
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From the calorimetric condition (4) follows also an equation for «:
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Using this expression for Hy, we can rewrite (19) as follows:

‘/““ bLny exp (oc) erfc (l/Z)
Ry | Ay % %y

Tk I/ {co— cy)erfc ( l/%‘l =T, (1—kc) —T,. (9"
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k is quite evident, according to (19), that in this case a solution can freeze only when Ty < Tx(1—ke),
i. e., after initial subcooling within the entire half-space x = 0. I also follows from (19) that the freezing
rate is here independent of b. Physical considerations require only that b be positive (this requirement
becomes obvious when one considers, for example, the expression for Ty (x, t)). However, the temperature
profile depends on b,

If the temperature difference [T*(1—keg)—T,] is small, then expression (19) can be approximated as

follows:
l/@ B To(l—ke)—T, 20)
% p ( oLy '
* | AT, + ‘D‘(co“c*)

Let us now consider the third boundary-value problem. I is quite evident that the solution for this
case must be sought in the form
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0 - dv x §
b, x) = — x| erfct —|; z= —"—= (see[2]).
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The coefficients in (21) are easily determined from conditions (2), (4), and (13).

We will not write out these expressions here. We will only note that those for A and B remain the
same, namely (16), and the coefficients of Ty and T, are analogous to the respective coefficients in [2] for
a pure solvent with T = T% replaced by T+[1—kc;—kBerfc@/a/D)]. The formal solution to the second or
the third boundary-value problem is easily obtained, even when the initial solvent temperature varies
linearly. One more term, namely a Gy(x) term, must then be added to the expression for T, [2].

We note, in conclusion, that this analysis of the freezing (crystallization) of binary solutions applies
to systems which can form simple eutectic mixtures and whose initial concentration is below the eutectic
level cg [1]. This calls for an additional restriction in the problem here, a consequence of the physical
aspects [1, 3]:

cll, H<<cg. (22)

The problem cannot have a solution when c(/, t) > ce. For this reason, one must always verify in-
equality (22) before calculations are made.

For the first boundary-value problem, (22), (5), and (7) yield the following additional limitation to
supplement (5)-{7):



Vaa/D (1 — c,jc)erfc (VD) < e
exp (—a/D) — V' na/D eric(y /D) %

(23)

For the second boundary-value problem, we formally obtain the same inequality from (22}, (14), and
(16), but the equation for o will obviously be different (see (19)).

A limiting inequality can also be obtained for the third boundary-value problem.

NOTATION
Ty is the temperature of the freezing solvent;
T, is the temperature of the solution;
Tx is the freezing point of the pure solvent;
0 is the temperature of the air;
c is the concentration of the dissolved substance;
Cx is the concentration of the dissolved substance in the solid phase:

D is the diffusivity of the dissolved substance;

M is the molecular weight of the solvent;

M is the molecular weight of the solute;

R is the gas constant;

L is the heat of melting of the solvent;

X is the longitudinal coordinate;

t is the instantaneous time;

/A is the coordinate of the interphase boundary;

Ak, ok are the thermal conductivity and the thermal diffusivity of the gaseous phase;
A,y are the thermal conductivity and the thermal diffusivity of the solid phase;
Ag, Mg are the thermal conductivity and the thermal diffusivity of the liguid phase;
p is the density of the solvent.
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